MASSIVE STARS seen through optical interferometry

Why are MASSIVE STARS important?

Evolution of galaxies

2 UV radiation sources

3 Producers of heavy elements

4 Deaths as supernovae

The challenge to observe MASSIVE STARS

1 Rare (IMF) **2** Extinction 3 Short lives (Ma) 4 Distant (>1kpc)

NGC 6193 1.2 kpc Orion Nebula 500 pc

How to study MASSIVE STARS?

Massive Stars

Massive stars don't like to be alone...

1/3 belongs to hierarchical triple systems !

‰

Sana, et al., 2014, ApJ

NGC 6193

HD 150136

Mahy, et al., 2012, A&A Niemela & Gamen, 2005, MNRAS

AMBER/VLTI LR-JHK

HD150136:

 $d=7 \text{ mas} \\ \Theta=209^{\circ} \\ f_T/f_{SB}=0.25$

Sanchez-Bermudez et al., 2013, A&A, 554, L4

M8 nebula

Herschel36

d=2 mas $\Theta=234^{\circ}$ $f_{A}/f_{B}=1.0$

Sanchez-Bermudez et al., 2014, A&A, 572, L1

Importance & Future work:

- Characterize young systems (~2Ma; HD150136)
- 2 Systems at the upper end of the IMF
- **3** Hints of massive star formation (Was Herschel36 formed by dynamical interactions?)
- **Follow up the orbits** (interferometry+radial velocities)
- **2** Test for coplanarity

Young MASSIVE Stars

Very luminous source (1 $\times 10^5 L_{\odot}$)

IRS 9

Spectral index $\alpha_{2.2-10\mu m}$ =1.37 Mass: 30-40 M_{\odot} Extinction: 4-5 mag OB cluster

1 pc

Mid-IR observations of IRS9A

Vehoff et al., 2010

MIDI/VLTI

N-band (8um-13um) Θmax=50 mas

T-ReCS-SAIM data of IRS9A

MIDI/VLTI data of IRS9A

Comparison with other targets...

From Robitaille's fitting tool:

Robitaille, et al., 2006

-Flared Disk -Envelope -Cavities

Table 4. The parameters of the Robitaille disk-envelope model 3012790.

Parameter	Unit	Value
Stellar mass	$[M_{\odot}]$	25
Stellar radius	$[R_{\odot}]$	6.5
Effective temperature	[K]	38 000
Luminosity	$[L_{\odot}]$	92 000
Inner disk/envelope radius	[AU]	25
Outer disk radius	[AU]	94
Outer envelope radius	[AU]	100 000
Disk dust mass	$[M_{\odot}]$	0.005
Envelope dust mass	$[M_{\odot}]$	0.9
Inclination	[*]	85
Disk flaring power, β		1.2
Disk scale height	[AU]	9
Cavity cone angle	[°]	29

Near-IR observations of IRS9A

NACO/SAM obs:

CRIRES archive:

- 7holes mask (21 baselines, 36 closure phases)
- Ks (2.2 um), Lp (3.8 um)

- H2 (2.121 μm) and BrG (2.166 μm)
- R≈33000; 9.0 km/s
- 3 position angles (0°, 90°, 128°)

Disk [diam]: 30 mas(210 AU)Over-resolved flux

Spectroastrometry

Adapted from Kraus et al., 2014

Adapted from Troutman et al., 2009

H2: 150-300 mas

BrG: ≈20 mas

Simultaneous fit to SED+V²

Visibilities (T-ReCS, MIDI, NACO)

Best-fit model

SEDs

(NIR photometry, SPITZER)

Robitaille et al., 2011

Simultaneous fit to SED+V²

Initial parameters from Vehoff+2010

Small grid of models:

- Rout (disk)
- Rin (disk)
- h (disk)
- Rout (envelope)
- Inclination

Sanchez-Bermudez et al., 2014 (submitted to A&A)

- Disk (outer radius): 80+/- 20 AU
- Disk (inner radius): 10 AU [prev: 25 AU]
- Envelope: 7000 AU [prev:10^5 AU]
- Inclination: 60° [prev: ~85° AU]

SUMARIZING...

Optical interferometry allows to study the physics and morphology of MYSOs (e.g., IRS9A)

Envelope

Disk

Envelope

Disk

New observations with the 2nd. generation of VLTI instruments will serve to better constrain our models

Observations of IRS9A with MATISSE

- (u-v) coverage with ASPRO
- 6 baselines (UTs)
- 4um-13um (L-N)
- Θ max=7mas (49 AU)

Model of IRS9A

Thank you!