LUMINOUS INFRARED GALAXIES FROM A MULTIWAVELENGTH PERSPECTIVE

RUBÉN HERRERO-ILLANA

INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA (IAA-CSIC)

05/02/2015 [ESAC Science Seminar]

Outline

1. Introduction

2. Observations

3. Results

3.1. Molecular gas in (U)LIRGs

- 3.2. NGC1614 as a case study
- 3.3. Multiwavelength study of LIRGs
- 3.4. Massive star formation in Arp299
- 3.5. The radial distribution of supernovae

4. Conclusions

LIRGs & ULIRGs

- Morphological diversity
- Mostly mergers above $\sim 3\times 10^{11} L_{\odot}$
- SFR up to 500 $M_{\odot}/{
 m yr}$
- Very high CCSN rate

Credit: NASA, ESA, Aaron Evans

$$\mathsf{LIRGs} \\ 10^{11} L_{\odot} \le L_{\mathrm{IR}} \le 10^{12} L_{\odot}$$

ULIRGs
$$L_{\rm IR} \ge 10^{12} L_{\odot}$$

(U)LIRGs - Motivation

Fundamental at high-z

(U)LIRGs - Motivation

Star formation ↔ AGN

Star formation ↔ AGN

The evolutionary pathway

Observations

Infrared mm Radio

Infrared

- Reduced extinction
- Mid-IR: 8.4 μm (θ~0.38")
- Near-IR: 1.9 μm (θ~0.15")
 - 2.2 μm (θ~0.07") Adaptive optics

Radio: single-dish

Radio interferometry

Radio interferometry

Radio interferometry

Observations: Radio & mm

Interferometers

 $\theta \sim 0.06''$

θ~0.40"

θ~0.005"

mm spectral study of molecular gas

05/02/2015, ESAC Science Seminar

e⁻ accelerated in SNR

e⁻ accelerated in SNR

HII regions ionized by massive stars

e⁻ accelerated in SNR

HII regions ionized by massive stars

Re-emission

Outline

1. Introduction

2. Observations

3. Results

3.1. Molecular gas in (U)LIRGs

3.2. NGC1614 as a case study

- 3.3. Multiwavelength study of LIRGs
- 3.4. Massive star formation in Arp299
- 3.5. The radial distribution of supernovae

4. Conclusions

11

General framework

G∅∆I	5	Great	Obser	vatory	<mark>fi</mark> ll-sky	LIRG Survey
gamma ∢	X-ray	UV	visible 11	IR	mm I	radio 🔶

General framework

General framework

General framework

+ Ground based observations

- Stars formed in molecular clouds
- $H_2 \longrightarrow Tracers$


```
NASA, ESA, J. Hester (ASU)
```


05/02/2015, ESAC Science Seminar

- Stars formed in molecular clouds
- $H_2 \longrightarrow Tracers$
- IRAM 30m observations:
 - 56 (U)LIRGs

- Stars formed in molecular clouds
- $H_2 \longrightarrow Tracers$
- IRAM 30m observations:
 - 56 (U)LIRGs

05/02/2015, ESAC Science Seminar

Rubén Herrero-Illana

NASA, ESA, J. Hester (ASU)

Data reduction

05/02/2015, ESAC Science Seminar

Star formation efficiency

05/02/2015, ESAC Science Seminar

Star formation efficiency

Star formation efficiency

Dust properties (I)

Classical approach IRAS: 60µm, 100µm

Far-IR SED fitting

IRAS, IRAC, MIPS, SCUBA [8µm - 850µm]

Dust properties (II)

Classical approach IRAS: 60µm, 100µm

Far-IR SED fitting IRAS, IRAC, MIPS, SCUBA [8µm - 850µm]

 $M(H_2)/M_{
m dust} = 956$ $M(H_2)/M_{
m dust} = 621$

Gas-to-dust mass ratio often used to estimate gas mass from high-z galaxies.

Rubén Herrero-Illana

Spectral profiles

Spectral profiles

Spectral profiles

05/02/2015, ESAC Science Seminar
Spectral profiles

05/02/2015, ESAC Science Seminar

Molecular gas in (U)LIRGs

Rubén Herrero-Illana

Outline

1. Introduction

2. Observations

3. Results

3.1. Molecular gas in (U)LIRGs

3.2. NGC1614 as a case study

3.3. Multiwavelength study of LIRGs3.4. Massive star formation in Arp2993.5. The radial distribution of supernovae

4. Conclusions

NGC1614: an exploratory study

- LIRG at 64 Mpc
- $L_{IR} = 4 \times 10^{11} L_{\odot}$
- AGN controversy
- SF ring of ~600 pc revealed in $Pa\alpha$

NGC1614: an exploratory study

- LIRG at 64 Mpc
- $L_{IR} = 4 \times 10^{11} L_{\odot}$
- AGN controversy
- SF ring of ~600 pc revealed in Paα

05/02/2015, ESAC Seminar

A multiwavelength study

Herrero-Illana *et al.*, 2014, ApJ

- Morphological similarities
- Study of 7 regions within the ring

Thermal and non-thermal radio emission²⁵

3.6 cm emission

05/02/2015, ESAC Science Seminar

Thermal and non-thermal radio emission²⁵

3.6 cm emission

05/02/2015, ESAC Science Seminar

Multi-epoch & multi-band observations

No significance $lpha_{
m N}\simeq -1.3$ variability

X-ray emission

Chandra archive observations

05/02/2015, ESAC Science Seminar

X-ray emission

Chandra archive observations

05/02/2015, ESAC Science Seminar

NGC1614 SED model fitting

- Exponentially decaying starburst
- Global fit
- SFR: 60 M_{\odot}/yr
- CCSN rate ~0.4 SN/yr

NGC1614 as a case study

05/02/2015, ESAC Science Seminar

Outline

1. Introduction

2. Observations

3. Results

3.1. Molecular gas in (U)LIRGs

3.2. NGC1614 as a case study

3.3. <u>Multiwavelength study of LIRGs</u>

3.4. Massive star formation in Arp2993.5. The radial distribution of supernovae

4. Conclusions

A multiwavelength approach

05/02/2015, ESAC Science Seminar

ESO440-IG058: nascent starburst?

Off-nuclear starburst, possibly triggered by the merging process

Spectral index maps

05/02/2015, ESAC Science Seminar

05/02/2015, ESAC Science Seminar

Source	Age SB (Myr)	CCSN rate (SN/yr)	AGN/SB
MCG+08-11-002	47.9	0.14	0.0
IC883	34.3	0.64	0.32
IRAS16516	27.1	0.16	0.0
IRAS17138	9.1	0.10	0.19
IRAS18293	22.4	0.81	0.0
NGC6926	7.7	0.02	7.76

General agreement between SED modeling and AGN diagnostics (handle it with care!)

05/02/2015, ESAC Science Seminar

Multiwavelength study of LIRGs

Outline

- 1. Introduction
- 2. Observations
- 3. Results
 - 3.1. Molecular gas in (U)LIRGs
 - 3.2. NGC1614 as a case study
 - 3.3. Multiwavelength study of LIRGs

3.4. Massive star formation in Arp299

- 3.5. The radial distribution of supernovae
- 4. Conclusions

LIRGI

MERLIN

M. Á. Pérez-Torres

Luminous Infra-Red Galaxy Inventory

J. Conway

- 42 of the most luminous northern LIRGs.
 Similar properties to SF galaxies at high-z
- $log(L_{IR}) > 11.4$ D < 250 Mpc
- 6 and 18 cm observations
 353 hours
- Complementary EVN observations

http://lirgi.iaa.es

Lovell Telescope - 76 m

LIRGI

MERLIN

M. Á. Pérez-Torres

Luminous Infra-Red Galaxy Inventory

J. Conway

- 42 of the most luminous northern LIRGs. Similar properties to SF galaxies at high-z
- $\log(L_{IR}) > 11.4$ D < 250 Mpc
- 6 and 18 cm observations 353 hours
- Complementary EVN observations

http://lirgi.iaa.es

Lovell Telescope - 76 m

05/02/2015, ESAC Science Seminar

Arp 299 overview

Neff et al., 2004, ApJ

- Most luminous local LIRG
- $L_{IR} \sim 7.6 \times 10^{11} L_{\odot}$
- D ~ 45 Mpc
- Mid-stage merger

Arp 299: e-MERLIN @ 5GHz

Arp 299: e-MERLIN @ 5GHz

Arp 299: e-MERLIN @ 5GHz

SN2010P & SN2010O characterization

13 epochs, 4 radio bands

SN2010P & SN2010O characterization

^{05/02/2015,} ESAC Science Seminar

Rubén Herrero-Illana
SN2010P & SN2010O characterization

13 epochs, 4 radio bands

05/02/2015, ESAC Science Seminar

Rubén Herrero-Illana

41

Arp299-A EVN observations

Pérez-Torres et al., 2009, A&A

- 6 epochs in 2.5 years Stacking @ 6cm
- 25 sources detected above 5σ
- 2 new SNe
- CCSN rate > 0.8 SN/yr

05/02/2015, ESAC Science Seminar

Outline

1. Introduction

2. Observations

3. Results

3.1. Molecular gas in (U)LIRGs

- 3.2. NGC1614 as a case study
- 3.3. Multiwavelength study of LIRGs

3.4. Massive star formation in Arp299

3.5. The radial distribution of supernovae

4. Conclusions

Circumnuclear disks

Method and previous studies

The sample

46

Scale length obtention

$$\Sigma^{\mathrm{SN}} = \Sigma_0^{\mathrm{SN}} \exp(-r/h_{\mathrm{SN}})$$

Power-law profile

The radial distribution of SNe

- Global VS nuclear distribution
- Circumnuclear disks:
 - Arp 299-A & Arp 220 ~20 pc
 - M82 ~160 pc
- Supports numerical models

• y ~ 1

Outline

1. Introduction

2. Observations

3. Results

3.1. Molecular gas in (U)LIRGs
3.2. NGC1614 as a case study
3.3. Multiwavelength study of LIRGs
3.4. Massive star formation in Arp299
3.5. The radial distribution of supernovae

4. Conclusions

Bottom lines

Multiwavelength view on the central kpc region

Molecular gas survey

> Unveiling the core of (U)LIRGs

- Extreme SF & AGN in (U)LIRGs: perfect laboratory where to study these phenomena.
- A multiwavelength approach is crucial to understand these sources as global systems and understand its evolution.
- It is essential to study (U)LIRGs at different scales to characterize its different physical conditions.
- VLBI offers a unique tool to study nuclear processes.

Bottom lines

Multiwavelength view on the central kpc region

Molecular gas survey

> Unveiling the core of (U)LIRGs

Thanks!

- Extreme SF & AGN in (U)LIRGs: perfect laboratory where to study these phenomena.
- A multiwavelength approach is crucial to understand these sources as global systems and understand its evolution.
- It is essential to study (U)LIRGs at different scales to characterize its different physical conditions.
- VLBI offers a unique tool to study nuclear processes.